Effect of Intraspecimen Spatial Variation in Tissue Mineral Density on the Apparent Stiffness of Trabecular Bone

This study investigated the effects of intraspecimen variations in tissue mineral density (TMD) on the apparent-level stiffness of human trabecular bone. High-resolution finite element (FE) models were created for each of 12 human trabecular bone specimens, using both microcomputed tomography (μCT) and “gold-standard” synchrotron radiation μCT (SRμCT) data. Our results confirm that incorporating TMD spatial variation reduces the calculated apparent stiffness compared to homogeneous TMD models. This effect exists for both μCT- and SRμCT-based FE models, but is exaggerated in μCT-based models. This study provides a direct comparison of μCT to SRμCT data and is thereby able to conclude that the influence of including TMD heterogeneity is overestimated in μCT-based models. [DOI: 10.1115/1.4029178]

Keywords: trabecular bone, tissue mineral density, heterogeneity, finite element analysis, microcomputed tomography, synchrotron, mechanical properties, apparent modulus

Introduction

The mechanical behavior of human trabecular bone plays an important role in the load-bearing function of the skeleton and is significantly impacted in common medical conditions such as osteoporosis. The mechanical behavior of trabecular bone is determined by several factors including bone volume fraction (BV/TV), microstructure, and—the main topic of this study—the material properties of the bone tissue. The effect of microstructure on the overall “apparent-level” mechanical behavior of trabecular bone specimens (typically at the scale of 5–10 mm) has been investigated in several computational studies [1–5]. However, these studies typically assume homogeneous material properties for the bone tissue at the “tissue level” (typically at the scale of 100 μm or less), neglecting to account for any spatial variations in the TMD. These variations are the result of normal bone remodeling [6,7], can be altered by osteoporosis treatments [6,8–10], and have been shown to directly influence the mechanical properties of bone tissue [11–17].

Previous studies have attempted to quantify the effect of TMD variation on the mechanical properties of bone tissue. These studies have incorporated spatial variations in TMD by creating heterogeneous high-resolution μCT-based FE models. FE models with applied variations in mineralization based on different algorithms [17,18] as well as FE models where the heterogeneity in the mineralization is measured from high-resolution μCT images of the trabecular bone [11,14–17,19] have been investigated. These studies all demonstrated that a trabecular bone model that accounts for TMD heterogeneity will predict lower apparent stiffness than a model with homogeneous TMD. However, these studies were limited by the resolution and quality of the μCT images and therefore capture only the TMD variations detectable by μCT.

Materials and Method

Study Design. In this study, μCT- and SRμCT-based FE analyses were performed on 12 human trabecular bone samples, all taken from unique donors. Human trabecular bone from several anatomic sites (femoral head, proximal tibia, and vertebra) was used to enable the interpretation of findings in the context of varying bone structure. The μCT and SRμCT imaging was used to define microstructure and characterize the spatial variation in mineralization, while FE modeling was used to characterize mechanical behavior.

A main feature of this study design is the ability to determine and isolate any biomechanical effects associated with material heterogeneity from those effects associated with microstructure. Further, the effects of intraspecimen TMD variation were isolated from interspecimen TMD variation. To achieve this, we considered three virtually altered mineralization cases for each μCT and SRμCT scan (Fig. 1): (1) a heterogeneous model with spatially varying mineralization throughout the bone as measured directly by μCT or SRμCT; (2) a specimen-specific homogeneous model with the mean TMD value assigned to all bone tissue; and (3) a reference value homogeneous model with a constant reference value. In fact, μCT-based TMD measurement is influenced by substantial artifacts resulting from the polychromatic X-ray source and cone-shaped beam [20]. High energy, parallel-beam, monochromatic SRμCT is considered the gold standard in assessing TMD variation in trabecular bone.

Addressing these limitations of conventional μCT imaging, the goal of this study was to evaluate the influence of TMD variation in μCT-based FE models compared to gold standard SRμCT-based FE models. The results derived from this work improve understanding of how spatial variations in tissue material properties can influence apparent level properties and provide insight into the imaging methodologies used to assess the microstructure and micromechanics of trabecular bone.

1Corresponding author.

Manuscript received August 5, 2014; final manuscript received November 17, 2014; accepted manuscript posted December 10, 2014; published online December 10, 2014. Assoc. Editor: Blaine A. Christiansen.
TMD value for all bone tissue across all specimens. This resulted in three different models to evaluate for each of the 12 human trabecular bone specimens imaged by μCT and SRμCT (a total of 72 simulations and analyses).

Specimen Preparation. UCSF Committee for Human Research approval was granted for this work. Trabecular specimens were isolated from the femoral head (FEM, $n = 4$), vertebral body (VERT, $n = 5$), and proximal tibia (TIB, $n = 3$). Femoral head specimens were surgically excised during hip arthroplasty procedures at UCSF. Vertebrae and tibiae were harvested from human cadavers (National Disease Research Interchange, Philadelphia, PA). Each specimen was obtained from a unique donor. Each cylinder of trabecular bone (8 mm diameter and 4 mm length) was machined with the axis aligned in the superior–inferior orientation. The specimens were cleaned of marrow using a water jet with sonicator agitation and detergent washes as necessary (1%, Tergazyme, Alconox, Inc.). The specimens were stored at $-20\,^\circ\text{C}$ when not being processed.

μCT Scanning. The trabecular bone specimens were scanned using a μCT scanner (μCT-40 Scanco Medical AG., Bruttisellen, Switzerland). Imaging was performed at an isotropic voxel size of 8 μm using 70 kV source potential and 114 μA tube current. Each scan consisted of 2000 projections over 360 deg, with a 250 ms integration time per projection. Scan time was 11–12 h per specimen. Three-dimensional data sets were reconstructed using a cone beam approximation [21]. Attenuation values were converted to hydroxyapatite (HA) density in units of mgHA/cm3 using a HA calibration phantom and a beam hardening correction algorithm. Details of the calibration process and correction have been reported previously [20,22].

SRμCT Scanning. SRμCT imaging was performed on beamline X2B of the National Synchrotron Light Source (Brookhaven National Laboratory, Upton, NY). This beamline is equipped with a monochromator to create a specific narrow energy incident beam.

All specimens were scanned under identical conditions using a 26 keV beam selected based on an established energy optimization protocol that produces less than 0.1% variations in linear attenuation [20,23]. Each scan consisted of 1440 projections over 360 deg, with an integration time of 1800–2200 ms per projection. Typical scan time was 3–4 h per specimen. A filtered back-projection algorithm was applied to reconstruct three-dimensional images with isotropic voxel size of 7.5 μm, which were subsequently rescaled to isotropic 8 μm voxels. The same HA-calibration phantom used for the μCT images was scanned under the same conditions as the bone specimens and used to convert SRμCT attenuation values to mgHA/cm3. A comparison of image quality and density histograms is included in a previous publication [20].

FE Modeling. The reconstructed three-dimensional μCT and SRμCT data sets were masked to isolate bone from background using a manual thresholding scheme (IPL v5.01 c-ucsf, Scanco Medical AG). A single threshold value was determined for each anatomic site, based on the best delineation of bone surfaces and voids when visually compared to the original images. Thresholds were determined independently for μCT (FEM = 576 mgHA/cm3; TIB and VERT = 556 mgHA/cm3) and SRμCT (FEM = 715 mgHA/cm3, TIB and VERT = 556 mgHA/cm3). A comparison to alternate, automated thresholding schemes is described in a previous publication [20].

Using the binarized μCT and SRμCT images, BV/TV was computed by direct voxel counting [24]. Masked μCT and SRμCT images were used to calculate mean TMD. In this process, the outer two voxel layers were temporarily eroded from the bone surfaces (IDL v6.2, ITT) to minimize any effects of partial volume averaging [25].

FE models were constructed and analyzed using custom in-house software built on a highly scalable, implicit parallel FE framework [26]. Three-dimensional FE models were created by constructing an eight-noded hexahedral brick element with the side dimensions of 8 μm for every voxel in each μCT and SRμCT volume. The fine mesh used in this study ensures that the most important features of the trabecular bone and the mineral
Three models were evaluated for each CT and SRμCT data set (Fig. 1). In the heterogeneous model, we deployed the voxel-specific TMD directly obtained from the scan to assign a constant reference value to each element in the FE model, to then calculate the apparent heterogeneous modulus (EMET). This stiffness measure includes effects of TMD variations within and across specimens as well as microstructure variations across specimens. In the specimen-specific homogeneous model, we applied the specimen-specific mean TMD to assign a single mean tissue modulus to each element in the FE model, to then calculate the apparent homogeneous modulus (EEMOM). This stiffness measure includes effects of TMD variations within and across specimens as well as microstructure variations across specimens.

A series of normalized stiffness measures were calculated to consider the individual contributions of TMD variations and high-resolution, linearly elastic, FE analysis was used to simulate a uniform compression test under 1% uniaxial compressive strain. A power-law was used to assign a tissue modulus (Em) to each element in the models based on the element’s mineral density. The relationship used in this study was established by Easley et al. [19], by evaluating a compilation of data from the literature [19, 28–30]

\[Em = (1.127 \times 10^{-4}) \times TMD^{1.746} \] (1)

where unit of Em is GPa and unit of TMD is mgHA/cm³.

Table 1 Donor and specimen information grouped by anatomic site

<table>
<thead>
<tr>
<th>Anatomical Site</th>
<th>Age (mean ± SD, range)</th>
<th>Sex (M/F)</th>
<th>μCT BV/TV (mean ± SD, range)</th>
<th>SRμCT BV/TV (mean ± SD, range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femoral head</td>
<td>63 ± 9, 50–71</td>
<td>2/2</td>
<td>0.33 ± 0.04, 0.29–0.37</td>
<td>0.32 ± 0.03, 0.28–0.36</td>
</tr>
<tr>
<td>Vertebral</td>
<td>70 ± 3, 66–76</td>
<td>4/1</td>
<td>0.09 ± 0.03, 0.06–0.13</td>
<td>0.09 ± 0.03, 0.06–0.12</td>
</tr>
<tr>
<td>Proximal tibia</td>
<td>58 ± 9, 50–70</td>
<td>2/1</td>
<td>0.08 ± 0.02, 0.05–0.10</td>
<td>0.07 ± 0.02, 0.05–0.10</td>
</tr>
</tbody>
</table>

Statistics Analysis. Summary statistics were compiled using mean and standard deviation calculations. Because of the small sample sizes, some outcome parameter distributions were not normally distributed and thus nonparametric statistics were used. Paired Wilcoxon Signed Rank tests and general linear regression were used to compare μCT and SRμCT outcome measures. Bland–Altman analyses were also performed to assess the agreement between μCT and SRμCT results. For analyses comparing apparent modulus values, specimens were separated into low BV/TV (<0.20) and high BV/TV (>0.20) groups. The low BV/TV group included all Tib and Vert specimens, while the high BV/TV group included all Fem specimens (Table 1). For all tests, p < 0.05 was considered statistically significant. JMP (version 10, SAS) and Excel (2010, Microsoft) were used for statistical analysis.

Results

Apparent stiffness calculated from the μCT and SRμCT FE models correlated well; however, μCT-based FE analysis underestimated apparent modulus in both homogeneous and heterogeneous specimen-specific models. Linear regression between μCT and SRμCT values of EMET, EEMOM, and EREF produced correlations with R² > 0.99 (Fig. 3), Bland–Altman analysis revealed that μCT-based EMET and EEMOM were underestimated by 26% and 22%, respectively, compared to SRμCT-based values. In contrast, μCT-based EREF was overestimated by only 4%, reflecting the accuracy of microstructure determination by μCT. Paired Wilcoxon Signed Rank tests detected significant differences between μCT and SRμCT values for the entire range of BV/TV (p = 0.0005 EMET and EEMOM and p = 0.003 EREF).

Including intraspecimen TMD heterogeneity reduced the apparent stiffness calculated from both the µCT and SRµCT FE models. The calculated apparent modulus was lower in heterogeneous models compared to specimen-specific homogeneous models (EMET < EEMOM, p = 0.0005). This outcome was consistent for low and high BV/TV samples and for models created from both the μCT and SRµCT images (Fig. 4). In the low BV/TV group, EMET was lower than EEMOM by 15% (48 MPa) and 12% (47 MPa) for μCT and SRµCT, respectively (each p = 0.008). In the high BV/TV group, EREF was lower by 14% (222 MPa) and 9% (194 MPa) for μCT and SRµCT, respectively (each p = 0.125).

With the influence of specimen microstructure eliminated, including TMD heterogeneity again reduced the apparent stiffness calculated from both the μCT and SRµCT FE models. In order to remove the influence of microstructure and thereby isolate the influence of intra- and interspecimen TMD variations, EMET, EEMOM, and EREF were calculated for the μCT and SRµCT models (Fig. 5). Normalization with EREF eliminated the distinction between low and high BV/TV groups; therefore, all specimens were considered together. Mean differences between the normalized values EMET/EREF and EEMOM/EREF were 18% (0.13 MPa/...
MPa) and 12% (0.12 MPa/MPa) for \(\mu \text{CT} \) and SR\(\mu \text{CT} \) models, respectively (each \(p < 0.0005 \)).

The effect of including intraspecimen TMD heterogeneity was greater for \(\mu \text{CT} \) models than for SR\(\mu \text{CT} \) models and caused \(\mu \text{CT} \) models to underestimate apparent modulus. To isolate the influence of intraspecimen TMD variations, we evaluated the normalization \(\frac{E_{\text{HET}}}{E_{\text{HOM}}} \). Any microstructure effects are eliminated, as well as effects related to the mean mineralization of the specific specimen. Hence, this normalization depicts solely the effect of intraspecimen mineral distribution. Again, normalization with \(E_{\text{HOM}} \) eliminated the distinction between low and high BV/TV groups; therefore, all specimens were considered together. Bland–Altman analysis revealed a 5% underestimation of \(\frac{E_{\text{HET}}}{E_{\text{HOM}}} \) values for \(\mu \text{CT} \) data compared to SR\(\mu \text{CT} \) data (Fig. 3).

Discussion

This study confirms that incorporating TMD spatial variation into FE models of human trabecular bone reduces the calculated apparent stiffness compared to homogeneous TMD models. We
show that this effect exists for both μCT- and SRμCT-based FE models and for trabecular bone from different anatomic sites. These results are consistent with the previous work reporting that incorporation of spatial mineral heterogeneities in μCT-based computational models leads to a reduction in apparent stiffness [11,14–16,19]. In the single previous study to investigate this effect in SRμCT-based models, Gross et al. also found that the incorporation of spatial mineral heterogeneity leads to a reduction in apparent stiffness [31]. Our study provides a direct comparison of μCT-based FE models to gold standard SRμCT-based FE models. We are thereby able to conclude that including TMD heterogeneity in μCT-based models overestimates the influence of TMD variation.

Including intraspecimen TMD heterogeneity in μCT-based FE models overestimates the influence of TMD variation. The μCT images produced larger discrepancies between the homogeneous and the heterogeneous TMD models. These results follow directly from differences in the distribution of grayscales and consequently TMD detected by μCT and SRμCT; μCT scans detected lower mean TMD values but higher intraspecimen TMD variance than SRμCT scans. Compared to SRμCT scanning, conventional polychromatic μCT scanning produces relatively lower contrast and signal-to-noise and is subject to beam-hardening [20,32–35], all of which may contribute to this outcome.

A well-known limitation of conventional polychromatic μCT imaging is that TMD quantification is confounded by beam-hardening artifacts. Despite the use of beam-hardening correction algorithms, μCT-measured mean TMD underestimates SRμCT-measured mean TMD and ash densities [20]. In fully mineralized bone, beam-hardening artifacts can reduce the measured mean TMD by up to 20% [33]. The trend of TMD underestimation by μCT was observed in this present study and resulted in apparent modulus underestimation in the μCT-based models.

High-resolution FE studies of human and animal bone typically use μCT-based models with homogeneous TMD [2–4]. Though the previous studies have concluded that both μCT artifacts and the assumption of homogeneous TMD distribution would have little impact on studies that make relative comparisons of FE outcomes [19,31], these factors may have a more important effect on studies in which absolute magnitudes of the FE predictions are important. In particular, effective properties of bone tissue that are determined by calibrating FE predictions with experiments will be influenced by these errors. Therefore, μCT-based homogeneous models are suitable to study and determine overall trends and mechanisms, but in establishing absolute properties SRμCT-based heterogeneous models are theoretically more accurate.

High correlations ($R^2 > 0.99$) were found between apparent moduli calculated from μCT- and SRμCT-based FE models. This implies that post hoc scaling may be used to correct results of μCT-based models. This may be a more feasible alternative to SRμCT imaging for studies aiming to quantifying absolute biomechanical properties.

This study has some limitations. First, it is possible that differences in apparent stiffness calculated from the μCT and SRμCT reconstructions could be influenced by misalignment of the specimens between scans. However, these cylindrical specimens were machined with flat, parallel faces using a precision rotary saw blade in an effort to minimize any potential misalignment. Second, the results found here may not be applicable to μCT- and SRμCT scanning at different resolutions. The voxel size of the μCT and SRμCT scans used in this study was 8 μm. It is possible that greater differences may be found between μCT and SRμCT scans at lower resolutions due to greater volume averaging effects and less accurate microstructure data. Hence, the influence of...
including TMD heterogeneity may be related to the scanning resolu-
tion. Finally, the biomechanical measures examined here repre-
sent one aspect of structural integrity. These results may not capture completely the effects of TMD heterogeneity on—for example—fracture mechanics of trabecular bone.

In conclusion, we have found that including TMD heterogeneity in μCT-based FE models results in underestimation of apparent modulus. In addition, μCT imaging artifacts underestimate TMD, resulting in additional underestimation of apparent modulus in μCT-based FE models. These errors compound, with the result that a heterogeneous μCT-based model underestimates apparent modulus by 26%. Therefore, our data lead us to recommend that μCT-based FE models either (1) include TMD heterogeneity and employ a post hoc scaling correction or (2) absent an appropriate correction set, do not include TMD heterogeneity.

Acknowledgment

The authors would like to thank Steve Jorgensen, John Dun-
smuir, and Andrew Burghardt for their assistance in the acquisition of synchrotron data. Funding for this research was provided by NIH F32 AR053446 (G. J. K.) and K01 AR56734 (G. J. K.). N. K. was supported by Fulbright and Naroom scholarships. Time provided by the Brookhaven National Laboratory National Synchrotron Light Source. Computational resources were pro-
vided through the National Science Foundation via XSEDE, Grant No. TG-MCA00N019 (T. M. K.).

References

