Tramadol metabolism to O-desmethyl tramadol (M1) and N-desmethyl tramadol (M2) by dog liver microsomes: Species comparison and identification of responsible canine cytochrome P-450s (CYPs)

Tania E. Perez, Katrina L. Mealey, Tamara L. Grubb, Stephen A. Greene, and Michael H. Court

Program in Individualized Medicine (PrIMe), Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine.
Tramadol metabolism in dogs

Tania E Perez DVM MS, Program in Individualized Medicine (PrIMe), Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, 100 Grimes Way, Pullman, WA 99164, USA. Telephone: 509-335-0705; Fax: 509-335-0880; Email: tperez@vetmed.wsu.edu.

Counts:

Text pages: 18
Tables: 2
Figures: 10
References: 43
Abstract words: 250
Introduction words: 752
Discussion words: 1016

Nonstandard abbreviations: M1 – O-desmethyltramadol; M2 – N-desmethyltramadol; DLMs – dog liver microsomes; CYP – cytochrome P-450; HPLC – high performance liquid chromatography; MS – mass spectrometry
ABSTRACT

Tramadol is widely used to manage mild to moderately painful conditions in dogs. However, this use is controversial since clinical efficacy studies in dogs showed conflicting results, while pharmacokinetic studies demonstrated relatively low circulating concentrations of O-desmethyltramadol (M1). Analgesia has been attributed to the opioid effects of M1, while tramadol and the other major metabolite (N-desmethyltramadol, M2) are considered inactive at opioid receptors. The aims of this study were to determine whether cytochrome P450 (CYP) dependent M1 formation by dog liver microsomes is slower compared with cat and human liver microsomes; and identify the CYPs responsible for M1 and M2 formation in canine liver. Since tramadol is used as a racemic mixture of (+)- and (-)-stereoisomers, both (+)-tramadol and (-)-tramadol were evaluated as substrates. M1 formation from tramadol by liver microsomes from dogs was slower than from cats (3.9-fold), but faster than humans (7-fold). However, M2 formation by liver microsomes from dogs was faster than from cats (4.8-fold) and humans (19-fold). Recombinant canine CYP activities indicated that M1 was formed by CYP2D15, while M2 was largely formed by CYP2B11 and CYP3A12. This was confirmed by dog liver microsomes studies that showed selective inhibition of M1 formation by quinidine and M2 formation by chloramphenicol and CYP2B11 antiserum, and induction of M2 formation by phenobarbital. Findings were similar for both (+)-tramadol and (-)-tramadol. In conclusion, low circulating M1 concentrations in dogs is explained in part by low M1 formation and high M2 formation, which are mediated by CYP2D15 and CYP2B11/CYP3A12, respectively.
INTRODUCTION

Tramadol is an orally active drug that is widely used in the management of mild to moderately painful conditions in dogs (Gaynor, 2008; Lamont, 2008). However, this use in dogs is controversial since clinical efficacy studies have produced conflicting results. Some studies indicate that tramadol is equally or more effective than other drugs used to treat pain in dogs (Mastrocinque and Fantoni, 2003; Almeida et al., 2010; Martins et al., 2010; Clark et al., 2011; Kukanich and Papich, 2011; Malek et al., 2012; Neves et al., 2012; Rialland et al., 2012; Kongara et al., 2013; Morgaz et al., 2013; Teixeira et al., 2013; Cardozo et al., 2014), other studies have shown relatively poor analgesic efficacy in dogs (Davila et al., 2013; Delgado et al., 2014; Kogel et al., 2014). Tramadol is considered a prodrug with regard to opioid analgesic effects, requiring metabolic activation by cytochrome P450 (CYP) enzymes. Consequently, variability in drug response between studies could be a consequence of genetic polymorphisms or drug-drug interactions involving the canine CYPs. However the CYPs responsible for metabolizing tramadol to its active metabolite in dogs are unknown.

In humans, tramadol is primarily metabolized in the liver to O–desmethyltramadol (M1) by CYP2D6 and to N-desmethyltramadol (M2) by CYP2B6 and CYP3A4 (Figure 1) (Subrahmanyam et al., 2001). The analgesic effects of tramadol are primarily attributed to μ opioid-receptor activation by the M1 metabolite (KuKanich and Papich, 2004), while both tramadol and M2 are essentially devoid of opioid agonist effects (Lai et al., 1996; Gillen et al., 2000). The importance of CYP2D6-dependent metabolic activation of tramadol to M1 for analgesia has been demonstrated (in part) by studies of humans with CYP2D6 polymorphisms. In one study, patients with the CYP2D6 poor metabolizer phenotype required higher tramadol doses and needed rescue pain medication more often than patients with the CYP2D6 extensive
metabolizer phenotype (Stamer et al., 2003). Several other studies in human volunteers have also shown that the (opioid-dependent) miotic effects of tramadol and M1 plasma concentrations increase in proportion to CYP2D6 enzyme activity (Fliegert et al., 2005; Slanar et al., 2007; Matouskova et al., 2011).

Tramadol and the M1 and M2 metabolites have two chiral centers in the cyclohexane ring (see Figure 1). All currently available pharmaceutical formulations of tramadol are a racemic mixture of (+)-(1R, 2R)-tramadol and (-)-(1S, 2S)-tramadol, also known as (+)-tramadol and (-)-tramadol, respectively. Interestingly, (+)-M1 appears to be a more effective µ opioid agonist than (-)-M1 (Raffa et al., 1993). This was supported by a clinical study that showed about 2-fold lower (+)-tramadol and (+)-M1 plasma concentrations required for analgesia in human patients administered pure (+)-tramadol when compared with plasma concentrations of (-)-tramadol and (-)-M1 in patients who were administered pure (-)-tramadol (Grond et al., 1999). However, studies of tramadol metabolism by recombinant CYPs so far have used only racemic (±)-tramadol so it is unclear whether (+)-tramadol and (-)-tramadol are metabolized to their respective M1 and M2 metabolite stereoisomers by different CYPs or at different rates by specific CYPs (Subrahmanyam et al., 2001).

Dogs may differ in the capacity to metabolize tramadol to M1 when compared with other species. Specifically, pharmacokinetic studies have shown that average M1/tramadol area under the plasma concentration versus time curve (AUC) ratios after tramadol administration to dogs (0.027 to 0.1) (Giorgi et al., 2009; Kukanich and Papich, 2011) are quite low when compared with humans (0.27) (Garcia-Quetglas et al., 2007; Garcia Quetglas et al., 2007) and cats (1.4) (Cagnardi et al., 2011) suggesting that dogs may form M1 less efficiently than humans or cats. Tramadol is also commonly used to treat pain in cats. In contrast to dogs, studies in cats
(although fewer) have consistently demonstrated efficacy (Pypendop et al., 2009; Evangelista et al., 2014), which may be a consequence of the relatively high circulating M1 concentrations reported in cats after tramadol administration (Pypendop et al., 2009; Cagnardi et al., 2011).

In this study we initially evaluated species differences in hepatic microsomal metabolism of racemic (±)-tramadol to M1 and M2 to test the hypothesis that M1 formation (relative to M2 formation) is slower in dog liver microsomes compared with cat and human liver microsomes. We then used multiple approaches (recombinant enzymes, chemical and antibody inhibition, and induced hepatic microsomes) to identify the CYPs responsible for metabolizing (+)-tramadol and (-)-tramadol to M1 and M2 in dog liver. We had hypothesized that M1 would be formed by CYP2D15 (the canine ortholog of human CYP2D6), and that M2 would be formed by CYP2B11 and CYP3A12 (the canine orthologs of human CYP2B6 and CYP3A4).
MATERIALS AND METHODS

Reagents

(+)-tramadol hydrochloride (#T712515), (-)-tramadol hydrochloride (#T712525) O-desmethyltramadol hydrochloride (#D294740), O-desmethyltramadol-D6 (#D294742), N-desmethyltramadol (#D294700), and N-desmethyltramadol-D3 hydrochloride (#D294702) were purchased from Toronto Research Chemicals Inc. (Toronto, Ontario, Canada). Racemic (±)-tramadol was made by combining equal amounts of (+)-tramadol and (-)-tramadol. NADP⁺, isocitrate dehydrogenase, DL-isocitrate, chloramphenicol, and quinidine were obtained from Sigma-Aldrich (St. Louis, MO).

Bactosomes expressing recombinant canine CYPs (1A1, 1A2, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26; each co-expressed with canine P450 oxidoreductase) and liver microsomes from male beagle dogs treated with corn oil, rifampin, β-naphthoflavone, saline, phenobarbital and clofibric acid were obtained from Xenotech LLC (Lenexa, KS). Liver microsomes were prepared as previously described (Court et al., 1997) from a bank of frozen dog livers maintained at Washington State University. Livers were from 27 untreated adult dogs including 5 Beagles (all males), 5 Greyhounds (all males), 12 mixed breed dogs (6 females and 6 males), 4 Chihuahuas (3 males and 1 female), and one Labrador retriever (male). All dogs were healthy and were being euthanized for reasons unrelated to the present study. Liver microsomes were prepared from a bank of frozen cat livers maintained at Washington State University that were obtained from 16 domestic short-haired cats (11 males and 5 females). The collection of the dog and cat livers was approved by the Institutional Animal Care and Use Committee Washington State University (#04412).
Microsomes were prepared using frozen liver samples from 48 human donors with no known liver disease, which were provided by the International Institute for the Advancement of Medicine (Exton, PA), the Liver Tissue Procurement and Distribution System (University of Minnesota, Minneapolis), or the National Disease Research Interchange (Philadelphia, PA). These were de-identified samples that originally had been obtained under the approval of the Human Investigation Review Committee at the respective institutions. The use of these de-identified tissues for this study was approved by the Human Investigation Review Board at Washington State University.

The microsomal protein content of the human, dog, and cat liver microsomes used in this study were measured using the bicinchoninic acid assay (Thermo Scientific Pierce, Rockford, Illinois).

Tramadol metabolism assay using liver microsomes and recombinant CYPs.

An assay was developed to measure the rate of formation of O-desmethyltramadol (M1) and N-desmethyltramadol (M2) from tramadol [(+)-tramadol, (-)-tramadol, or (±)-tramadol] by dog, cat, and human liver microsomes and recombinant dog CYPs. Briefly, 100 µL incubations contained NADPH-regenerating system in water, enzyme (20 µg liver microsomes or 1 pmol recombinant enzyme) and was started by adding tramadol (1-2000 µM final concentration) in 50 mM potassium phosphate buffer pH 7.4 in water. All samples were prepared in duplicate or triplicate and incubated for 10 minutes in a water bath at 37°C. The reaction was stopped by adding 100 µL ice cold internal standards (200 nmol O-desmethyltramadol-D6 and 100 nmol N-desmethyltramadol-D3) in methanol, vortexed, centrifuged at 13,000 RCF for 5 minutes, and the supernatant analysed by HPLC with mass spectrometry detection. Unless otherwise indicated, all experiments were performed at least twice on different days and results averaged.
The HPLC apparatus (Agilent 1100, Agilent Technologies, Santa Clara, CA) was connected to a triple quadrupole mass spectrometry detector (AB-Sciex API4000, Applied Biosystems Life Technologies, Framingham, MA) operated in positive ion mode. The mobile phase consisted of 65% v/v water (containing 0.1% v/v formic acid) and 35% v/v methanol that was pumped at 1 mL per minute through a 2.1 mm x 50 mm 5 μC18 column (Zorbax Eclipse XDB-C18, Phenomenex, Torrance, CA). Mass transitions monitored included m/z 264→58 (tramadol), m/z 250→58 (O-desmethyltramadol), m/z 250→44 (N-desmethyltramadol), m/z 256→64 (O-desmethyltramadol-D6) and m/z 253→47 (N-desmethyltramadol-D3). Retention times for O-desmethyltramadol, O-desmethyltramadol-D6, N-desmethyltramadol, N-desmethyltramadol-D3, and tramadol were 1.841, 1.833, 3.35, 3.331 and 2.87 minutes respectively. The amount of metabolite formed per minute per mg of liver microsome (or per pmole of CYP) were calculated using a standard curve generated using samples with known concentrations of O-desmethyltramadol, N-desmethyltramadol, and internal standards dissolved in a blank matrix. Preliminary experiments confirmed linearity in metabolite formation for microsomal protein concentrations up to 0.2 mg/ml and incubation time up to 10 minutes.

Although this assay does not distinguish between the (+)- or (-)- metabolite enantiomers, the formation of each metabolite enantiomer from the respective substrate ((+)- or (-)-tramadol) was assumed based on evidence from at least one study that showed the pure (+)- and (-)-enantiomers of tramadol and O-desmethyltramadol do not racemize (Grond et al., 1999).

Inhibition assays

Chloramphenicol and quinidine were evaluated as inhibitors of M1 and M2 formation in pooled DLMs and recombinant enzymes. Inhibitors dissolved in methanol at concentrations ranging from 0.01 μM to 1000 μM were added to incubation tubes and dried down in a
centrifugal vacuum. NADPH cofactor mix and enzyme (20 µg of DLMs or 1 pmole of recombinant CYP2B11 or CYP2D15) were added to the tube and pre-incubated at 37°C for 15 minutes. Tramadol (5 µM final concentration) was then added and incubated for a further 10 minutes. The reaction was stopped by adding internal standard and the metabolites formed were measured by HPLC as described above.

An antibody inhibition assay was performed using rabbit anti-CYP2B11 immune serum that was a gift from Dr James Halpert, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Duignan et al., 1987). Pooled DLMs (0.2 mg/ml final concentration) were pre-incubated with the serum at different concentrations (ratios of serum to microsomal protein: 0:1, 5:1, 10:1, 15:1, 20:1) for 30 minutes at room temperature with NADPH cofactor mix. Tramadol (5 µM final concentration) was then added and incubated for a further 10 minutes. The reaction was stopped by adding internal standard and metabolites measured by HPLC-MS as described above.

For all inhibition assays, samples were prepared in triplicate, M1 and M2 formation rates were averaged, and then expressed as a percentage of control incubations that lacked inhibitor.

Enzyme kinetic and statistical analyses

Kinetic and statistical analyses were performed using Sigmaplot 12 software (Systat, San Jose, CA). For enzyme kinetic analysis, enzyme kinetics parameters (Km and Vmax) were determined using either the one enzyme or the two enzyme Michaelis-Menten model using non-linear regression analysis. The model of best fit was evaluated based upon plots of fitted versus observed data. Half-maximal inhibitory concentration (IC50) values were determined using nonlinear regression with a four parameter logistic curve. Differences in enzyme activities were evaluated using unpaired Student’s t-test (two groups) or ANOVA (three groups) with post-hoc
pairwise comparisons using Tukey’s test after first verifying prerequisites for parametric testing, including the normality of data distribution and equal variance between groups.
RESULTS

Racemic (±)-tramadol metabolism by dog, human and cat liver microsomes

Racemic (±)-tramadol was incubated at 5 µM substrate concentration with pooled liver microsomes from dogs (n = 27), humans (n = 48) and cats (n = 16) to evaluate species differences in tramadol metabolism. This substrate concentration was chosen since it roughly approximated maximal plasma concentrations (range 0.3 to 8 µM) observed in pharmacokinetic studies of tramadol in dogs administered at clinically used dosages (Kukanich and Papich, 2004; Giorgi et al., 2009; Kukanich and Papich, 2011). Mean (± SD) M1 and M2 formation rates and M1 to M2 formation ratios for each substrate are shown in Fig. 2. DLMs showed 3.9-fold lower M1 formation rates than cat liver microsomes (ANOVA with Tukey’s test, \(P < 0.001 \)), but over 7-fold higher activities than human liver microsomes (\(P < 0.001 \)) (Fig. 2a). On the other hand (Fig. 2b), DLMs showed consistently higher M2 formation rates than both cat liver microsomes (by 4.8-fold; \(P < 0.001 \)) and human liver microsomes (by 19-fold; \(P < 0.001 \)). When expressed as a M1/M2 metabolite ratio (Fig. 2c), DLMs formed the lowest amount of M1 relative to M2, about 2.8 fold less than human liver microsomes (\(P < 0.001 \)) and 19-fold less than cat liver microsomes.

Tramadol enantiomer metabolism by dog liver microsomes

(±)-tramadol, (+)-tramadol, and (-)-tramadol were then incubated at 5 µM substrate concentration with pooled DLMs to evaluate stereoselectivity in M1 and M2 formation. As shown in Fig. 3a, formation of M1 from (+)-tramadol was about 2.6 fold higher than from (-)-tramadol (ANOVA with Tukey’s test, \(P < 0.001 \)), while M1 formation from (±)-tramadol was intermediate between (+)-tramadol and (-)-tramadol. However, there were no differences in M2 formation from (±)-tramadol, (+)-tramadol, or (-)-tramadol (Fig. 3b).
Enzyme kinetic analysis was used to evaluate differences in the capacity of DLMs to form the M1 and M2 metabolites over a wide range of (+)-tramadol and (-)-tramadol concentrations (up to 2000 µM). Plots of M1 and M2 formation from (+)-tramadol and (-)-tramadol by pooled DLMs are shown in Fig. 4 and derived kinetic parameters are presented in Table 1. Eadie-Hofstee plots were clearly biphasic for M1 and M2 formation from (+)-tramadol and (-)-tramadol, consistent with the contribution of distinct high and low affinity activities in DLMs. The M1 formation intrinsic clearance estimate for the high affinity activity was 2.7-times higher for (+)-tramadol compared with (-)-tramadol, while M1 formation intrinsic clearance for the low affinity activity was about 5.5 times higher for (+)-tramadol compared with (-)-tramadol (Table 1). Intrinsic clearance values were similar for formation of M2 from (+)-tramadol compared with (-)-tramadol for both high and low affinity activities.

Tramadol enantiomer metabolism by recombinant dog CYPs

(+)-Tramadol and (-)-tramadol at 5 and 100 µM concentration were incubated with all commercially available recombinant dog CYPs in order to identify which canine CYPs are capable of forming M1 and M2 from (+)-tramadol and (-)-tramadol. As shown in Fig. 5a and Fig. 5c, only CYP2D15 showed significant formation of M1 from (+)-tramadol and (-)-tramadol, more than 30-times higher than the next most active CYP (CYP2B11) at both 5 and 100 µM concentrations. On the other hand, M2 formation from both (+)-tramadol and (-)-tramadol was mediated by multiple CYPs including CYP2B11, CYP2C41, CYP2C21, CYP3A12, and CYP2D15 (Fig. 5b and Fig. 5d). However, at the lower concentration tested (5 µM), CYP2B11 was the most active enzyme for both (+)-tramadol and (-)-tramadol.

Enzyme kinetic analysis was then performed using the recombinant CYPs that showed the highest formation rates of M1 (CYP2D15), and M2 (CYP2B11, CYP2D15, CYP2C41,
CYP2C21, and CYP3A12) to evaluate differences in the overall capacity to metabolize (+)-tramadol and (-)-tramadol. Plots of M1 formation from both (+)-tramadol and (-)-tramadol by CYP2D15 are shown in Fig. 6a and Fig. 6b, while plots of M2 formation from both (+)-tramadol and (-)-tramadol by CYP2B11 are shown in Fig. 6c and Fig. 6d. Derived enzyme kinetic parameters from all CYPs evaluated are given in Table 2. Eadie-Hofstee plots showed monophasic kinetics for most activities evaluated. Exceptions that were best described by biphasic kinetics included M1 formation from (+)-tramadol and (-)-tramadol by CYP2D15, and M2 formation from (+)-tramadol and (-)-tramadol by CYP2B11. Total intrinsic clearance estimates for M1 formation from (+)-tramadol and (-)-tramadol were 125-fold and 155-fold higher (respectively) for CYP2D15 compared with CYP2B11. On the other hand, total intrinsic clearance estimates for M2 formation from (+)-tramadol and (-)-tramadol were substantially lower for CYP2D15 compared with all other CYPs evaluated. M2 formation from (+)-tramadol was highest for CYP2C41, CYP3A12 and CYP2B11, while M2 formation from (-)-tramadol was highest for CYP2B11.

To explain higher M1 formation by DLMs from (+)-tramadol compared with (-)-tramadol we then compared high and low affinity intrinsic clearance estimates for M1 formation by CYP2D15 for each enantiomer. Interestingly a similar pattern to that observed for DLMs was seen with CYP2D15 in that the M1 formation intrinsic clearance estimate for the high affinity activity was 4.6-times higher for (+)-tramadol compared with (-)-tramadol while the low affinity activity intrinsic clearance estimate was 1.5-times higher for (+)-tramadol compared with (-)-tramadol (Table 2).
Relative contribution of CYPs to M1 and M2 formation

The relative contributions of each canine CYP to total formation of M1 and M2 in liver were then calculated using the measured intrinsic clearance estimates from Table 2 and normalized to hepatic CYP content using average published estimates (Heikkinen et al., 2015) that were available for CYP2B11 (35 pmol/mg protein), CYP2C21 (70 pmol/mg protein), CYP2D15 (56 pmol/mg protein) and CYP3A12 (93 pmol/mg protein) in Beagle liver microsomes. Unfortunately, an estimate of CYP2C41 hepatic abundance was not available. As shown in Fig. 7, M1 was predominantly formed by CYP2D15 from both (+)-tramadol (99%) and (-)-tramadol (99%) with essentially no contribution from any other CYP evaluated (<1%). Conversely, M2 was formed from (+)-tramadol and (-)-tramadol primarily by CYP2B11 (20% and 50%) and CYP3A12 (68% and 32%), with smaller contributions from CYP2C21 (10% and 14%), and negligible contributions from CYP2D15 (1% and 4%).

Effect of CYP selective chemical and antiserum inhibitors

The effects of selective inhibitors of CYP2D15 (quinidine (Roussel et al., 1998)) and CYP2B11 (chloramphenicol (Hay Kraus et al., 2000)) on M1 and M2 formation from (+)-tramadol and from (-)-tramadol in pooled DLMs and recombinant CYP2D15 and CYP2B11 were evaluated over a wide range inhibitor concentrations from 0.01 µM to 1000 µM. As shown in Fig. 8, quinidine selectively inhibited M1 formation from (+)-tramadol for DLMs (IC50 = 0.25 ± 0.1 µM) and CYP2D15 (IC50 = 1.7 ± 0.17 µM), while chloramphenicol did not (IC50 > 50 µM for both). Conversely, chloramphenicol selectively inhibited M2 formation from (+)-tramadol for DLMs (IC50 = 1.2 ± 0.3 µM) and CYP2B11 (8.8 ± 0.25 µM), but quinidine did not (IC50 > 100 µM for both). Essentially identical results were observed for M1 formation from (-)-tramadol with inhibition by quinidine for DLMs (IC50 = 0.31 ± 0.18 µM and CYP2D15 (IC50 = 1.6 ± 0.16
μM), but not by chloramphenicol (IC$_{50}$ > 50 μM for both). Similarly, there was selective inhibition of M2 formation from (-)-tramadol by chloramphenicol for DLMs (IC$_{50}$ = 0.88 ± 0.5 μM) and CYP2B11 (IC$_{50}$ = 10.5 ± 0.03 μM), but not by quinidine (IC$_{50}$ > 100 μM for both).

The effect of preincubation with increasing amounts of an inhibitory antiserum specific to CYP2B11 on M1 and M2 formation from (+)-tramadol and (-)-tramadol was evaluated using pooled DLMs. As shown in Fig. 9 there was selective inhibition (>50% decrease in mean activity from control) of M2 formation from (+)-tramadol and (-)-tramadol, without substantially affecting M1 formation from (+)-tramadol and (-)-tramadol at all CYP2B11 antiserum concentrations evaluated (5:1 to 20:1 antiserum to microsomal protein ratios).

Effect of CYP selective inducers

The impact of CYP selective inducers including β-naphthoflavone (CYP1A), phenobarbital (CYP2B), rifampin (CYP3A), and clofibric acid (CYP4A) on tramadol metabolism was evaluated using pooled liver microsomes from male Beagle dogs (2 per treatment) that had been administered each of these inducers. Results were compared to vehicle treated liver microsomes. Vehicles included corn oil for rifampin and β-naphthoflavone, and saline for phenobarbital and clofibric acid. As shown in Fig. 10, none of the inducers substantially affected M1 formation from (+)-tramadol or (-)-tramadol with less than 2-fold average differences from control activities. On the other hand, M2 formation from (+)-tramadol and from (-)-tramadol were substantially increased by phenobarbital with mean ± SD activities that were 14.0 ± 0.02 and 14.4 ± 0.11 (respectively) times control activities. None of the other inducers evaluated substantially affected M2 formation.
DISCUSSION

The major novel finding of this study is that tramadol is metabolized in dog liver to M1 by CYP2D15, while M2 is formed by multiple enzymes, primarily CYP2B11 and CYP3A12. Multiple observations provide evidence supporting these conclusions, including recombinant enzyme activities, selective inhibition of M1 formation by quinidine, and of M2 formation by chloramphenicol and CYP2B11 antiserum, and induction of M2 formation (but not M1 formation) by phenobarbital. Recombinant enzyme activities also indicated minor contributions to M2 formation from CYP2C21 and CYP2D15 that account for less than 14% of liver activity when adjusted for published canine hepatic abundance of these CYPs (Heikkinen et al., 2015). Recombinant CYP2C41 also showed significant M2 formation activity especially from (+)-tramadol. Unfortunately, the hepatic protein abundance of CYP2C41 has not been reported and so the relative contribution of this enzyme to M2 formation in dog liver cannot be estimated at present. Although relatively little is known about CYP2C41, one study showed that only 4 of 25 dogs tested had the CYP2C41 gene possibly resulting from a gene deletion polymorphism (Blaisdell et al., 1998). Consequently, one approach to evaluate the potential role of CYP2C41 in tramadol metabolism in dogs could involve comparing M2 formation in dogs with the CYP2C41 gene to those without.

Given the major role for CYP2D15 in M1 formation in dogs, it is likely that factors influencing CYP2D15 activity such as genetic polymorphisms or co-administered CYP2D15 inducers or inhibitors would influence circulating M1 concentrations. Various CYP2D15 genetic polymorphisms have been reported (Roussel et al., 1998; Paulson et al., 1999) although it is unclear whether they substantially impact CYP2D15 activity. We showed that quinidine is a relatively potent inhibitor of M1 formation by DLMs and CYP2D15 therefore we would predict...
that co-administration of quinidine with tramadol would decrease its analgesic efficacy. However, this drug is not commonly used in dogs. Other potential CYP2D inhibitors that are more likely to be coadministered with tramadol for treatment of pain in dogs such as buprenorphine, methadone, paroxetine, and fluoxetine should be evaluated for effects on M1 formation.

Another important finding was the marked species difference in formation of M1 and M2 by dog, human, and cat liver microsomes. Based on published data on tramadol and metabolite plasma concentrations in dogs, we had hypothesized that M1 formation should be lowest with DLMs. Although we did confirm lower M1 formation compared with cats, M1 formation by DLMs was higher than for human liver microsomes. Consequently, additional mechanisms are likely to account for low M1 concentrations in dog plasma. One possibility is competition for substrate availability for O-demethylation to M1 by more rapid N-demethylation to M2. In support of this, we did show a much higher capacity for DLMs to form M2 compared with human and cat liver microsomes suggesting CYP2B11 and/or CYP3A12 mediated tramadol N-demethylation is much more efficient in dogs. Another possibility is more rapid clearance of M1 in dogs compared with cats and humans. M1 appears to be cleared largely via N-demethylation to M5, which is also a major circulating tramadol metabolite in dogs. Although M5 has weak µ opioid-receptor effects when administered directly into the brain, peripheral administration has no opioid effects suggesting it is unable to effectively cross the blood-brain barrier (Gillen et al., 2000). Consequently, this pathway (M1 conversion to M5) could be an important determinant of M1-dependent opioid effects and so future studies are needed to evaluate this pathway including identification of the responsible CYPs.
Metabolism by CYPs in the intestinal mucosa could also influence circulating concentrations of M1 and M2 through first pass metabolism after oral administration of tramadol. A quantitative proteomics study recently showed that CYP3A12 and CYP2B11 are the predominant CYPs in canine intestinal mucosa (Heikkinen et al., 2015) out of 7 CYPs evaluated. However, CYP2D15 was not detected. Consequently, based on our results M2 formation is predicted to predominate over M1 formation in dog intestinal mucosa, which could be evaluated in future studies of dog intestinal microsome preparations.

Another interesting finding is that we observed non-Michaelis-Menten biphasic enzyme kinetics in Eadie-Hofstee plots of M1 and M2 formation by both DLMs and recombinant enzymes. Biphasic kinetics were reported previously in several other studies for tramadol metabolism by human liver microsomes (Paar et al., 1992; Subrahmanyam et al., 2001). This was attributed in one study to the contribution of multiple low and high affinity CYP isoforms to the measured activity (Subrahmanyam et al., 2001). However we also observed biphasic kinetics for individual recombinant CYPs, suggesting instead the presence of low and high affinity catalytic sites for tramadol within the same enzyme, although other causes cannot be excluded (Seibert and Tracy, 2014).

There was some evidence for stereoselectivity in tramadol metabolism in that M1 was formed about 2 times more efficiently from (+)-tramadol than from (-)-tramadol by both DLMs and CYP2D15. This could be a reflection of differences in binding of (+)-tramadol versus (-)-tramadol to the CYP2D15 enzyme active site/s thereby influencing catalytic efficiency. Both CYP3A12 and CYP2C41 also appeared to be more efficient at forming M2 from (+)-tramadol compared with (-) tramadol, but this difference was not observed in DLMs. In contrast to our results, M1 formation from (+)-tramadol was previously shown to be about 2 times less efficient.
than M1 formation from (-)-tramadol in human (Paar et al., 1992) and rat (Liu et al., 2003) liver microsomes. Furthermore, higher M2 formation from (-)-tramadol compared with (+)-tramadol has been reported for human liver microsomes (Paar et al., 1992). These species differences probably reflect differences in binding of (+)-tramadol and (-)-tramadol to the respective CYP active sites between species. The clinical implications of these differences in stereoselective metabolism of tramadol with regard to the analgesic effects of this drug remain to be determined.

In conclusion, the results of this study suggest that lower circulating concentrations of the tramadol M1 metabolite in dogs compared with humans and cats may be explained by more efficient formation of the tramadol M2 metabolite through a competing pathway. Additionally, multiple approaches identified CYP2D15 as the predominant CYP mediating formation of M1, while M2 was formed mainly by CYP2B11 and CYP3A12 in canine liver.
AUTHOR CONTRIBUTIONS

Participated in research design: Perez, Mealey, Grubb, Greene, Court.

Conducted experiments: Perez.

Contributed new reagents or analytic tools: None.

Performed data analysis: Perez, Court.

Wrote or contributed to the writing of the manuscript: Perez, Mealey, Grubb, Greene, Court.
REFERENCES

Blaisdell J, Goldstein JA, and Bai SA (1998) Isolation of a new canine cytochrome P450 CDNA from the cytochrome P450 2C subfamily (CYP2C41) and evidence for polymorphic differences in its expression. Drug Metab Dispos 26:278-283.

FOOTNOTES

Dr. Perez was supported in these studies by a Morris Animal Foundation Fellowship Training Grant [D16CA-401]. Dr. Court was supported by the US National Institutes of Health grant [GM102130] and the William R. Jones endowment to Washington State University College of Veterinary Medicine.
FIGURE LEGENDS

Figure 1. Tramadol metabolic pathways evaluated in this study. Tramadol and the M1 and M2 metabolites have two chiral centers in the cyclohexane ring. All pharmaceutical preparations of tramadol are a racemic mixture of (+)-(1R,2R)-tramadol and (-)-(1S,2S)-tramadol, also known as (+)-tramadol and (-)-tramadol, respectively. In humans, racemic tramadol is O-demethylated by CYP2D6 to O-desmethyltramadol (M1) and N-demethylated by CYP2B6 and CYP3A4 to N-desmethyltramadol (M2).

Figure 2. Species differences in formation rates of M1 (panel A) and M2 (panel B), and in the ratios of M1 to M2 (panel C) from racemic (±)-tramadol by pooled dog (n = 27), human (n = 48), and cat (n = 16) liver microsomes. Bars represent the mean (± SD) of triplicate independent determinations. *P<0.001 versus dog liver microsomes (ANOVA with Tukey’s test).

Figure 3. Formation rates of M1 and M2 from racemic (±)-tramadol, (+)-tramadol and (-)-tramadol by pooled (n = 27) dog liver microsomes. Bars represent the mean (± SD) of triplicate independent determinations. *P<0.001 versus dog liver microsomes (ANOVA with Tukey’s test).

Figure 4. Michaelis-Menten enzyme kinetic plots of M1 (panel A) and M2 (panel C) formation from (+)-tramadol and from (-)-tramadol by pooled (n = 27) dog liver microsomes. Also shown are Eadie-Hofstee plots of these same data (panels B and D, respectively). Each data point represents the mean of two independent determinations performed in duplicate, and the curves represent the model of best fit to the data.
Figure 5. Formation rates of M1 and M2 from (+)-tramadol and from (-)-tramadol by recombinant canine CYPs measured at 5 and 100 µM substrate concentration. Bars represent the mean (± SD) of triplicate determinations.

Figure 6. Michaelis-Menten enzyme kinetic plots of M1 formation by CYP2D15 (panel A) and M2 formation by CYP2B11 (panel C) from (+)-tramadol and from (-)-tramadol. Also shown are Eadie-Hofstee plots of these same data (panels B and D, respectively). Each data point represents the mean of three independent determinations performed in duplicate, and the curves represent the model of best fit to the data.

Figure 7. Estimated relative contributions of canine CYPs to M1 and M2 formation tramadol in liver from (+)-tramadol and from (-)-tramadol. Intrinsic clearance estimates from Table 2 were normalized to hepatic CYP content using average published estimates for CYP2B11, CYP2C21, CYP2D15, and CYP3A12 in Beagle liver microsomes. Note that this evaluation does not include a possible contribution from CYP2C41 since a hepatic abundance estimate was not available for this CYP.

Figure 8. Selective inhibition of M1 formation from (+)-tramadol (panel A) and (-)-tramadol (panel C) by quinidine in pooled (n = 27) dog liver microsomes and CYP2D15; and selective inhibition of M2 formation from (+)-tramadol (panel B) and (-)-tramadol (panel D) by chloramphenicol in pooled (n = 27) dog liver microsomes and CYP2B11. Shown are the rates of metabolite formation (mean ± SD of triplicate determinations) in the presence of inhibitor (0.01 to 1000 µM) expressed as a percentage of the formation rate without inhibitor (control activity).

Figure 9. Selective inhibition of M2 (but not M1) formation from (+)-tramadol and (-)-tramadol by anti-CYP2B11 immune serum in pooled (n = 27) dog liver microsomes. Shown are
the rates of metabolite formation (mean ± SD of triplicate determinations) in the presence of anti-CYP2B11 immune serum (5:1 to 20:1 antiserum to microsome protein ratio) expressed as a percentage of the formation rate without antiserum (control activity).

Figure 10. Effect of CYP inducers on the rate of M1 (panel A) and M2 (panel B) formation from (+)-tramadol and (-)-tramadol in pooled liver microsomes from dogs treated with rifampin, β-naphthoflavone, phenobarbital and clofibrate acid. Shown are the rates of metabolite formation (mean ± SD of triplicate determinations) in microsomes prepared from inducer treated male Beagle dogs (pooled from 2 dogs per treatment) expressed as a ratio of the formation rate in microsomes from vehicle treated dogs (control activity).
Table 1. Enzyme kinetic parameters determined by nonlinear regression for formation of M1 and M2 from (+)-tramadol and (-)-tramadol by pooled DLMs (n = 27). The data points used for fitting were the average of two independent experiments performed in duplicate (data points shown in Figure 4 with the curves of best fit). Fitted parameters included Km and Vmax, while intrinsic clearance (Vmax/Km) values were calculated. Data for (+)-M1 and (-)-M1 formation were best fit by a 2 enzyme model and so kinetic parameters for high (1) and low (2) affinity activities are given as well as the sum of the high and low intrinsic clearance values (ΣVmax/Km).

<table>
<thead>
<tr>
<th>Activity</th>
<th>Km1<sup>a</sup></th>
<th>Vmax1<sup>b</sup></th>
<th>Vmax1/Km1<sup>c</sup></th>
<th>Km2<sup>a</sup></th>
<th>Vmax2<sup>b</sup></th>
<th>Vmax2/Km2<sup>c</sup></th>
<th>ΣVmax/Km<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-M1</td>
<td>7.0</td>
<td>248</td>
<td>35</td>
<td>554</td>
<td>329</td>
<td>0.6</td>
<td>36</td>
</tr>
<tr>
<td>(-)-M1</td>
<td>9.8</td>
<td>92</td>
<td>9.3</td>
<td>117</td>
<td>13</td>
<td>0.11</td>
<td>9.4</td>
</tr>
<tr>
<td>(+)-M2</td>
<td>69</td>
<td>440</td>
<td>6.4</td>
<td>5442</td>
<td>843</td>
<td>0.15</td>
<td>6.6</td>
</tr>
<tr>
<td>(-)-M2</td>
<td>49</td>
<td>235</td>
<td>4.6</td>
<td>2494</td>
<td>318</td>
<td>0.12</td>
<td>4.7</td>
</tr>
</tbody>
</table>

^aµM, ^bnmol/min/mg protein, ^cmL/min/mg protein
Table 2. Enzyme kinetic parameters determined by nonlinear regression for formation of M1 and M2 from (+)-tramadol and (-)-tramadol by dog recombinant CYPs. The data points used for fitting were the average of three independent experiments performed in duplicate (data points shown in Figure 5 with the curves of best fit). Fitted parameters included Km and Vmax, while intrinsic clearance (Vmax/Km) values were calculated. Data for (+)-M1 and (-)-M1 formation by CYP2D15 were best fit by a 2 enzyme model and so kinetic parameters for high (1) and low (2) affinity activities are given as well as the sum of the high and low intrinsic clearance values (ΣVmax/Km).

<table>
<thead>
<tr>
<th>Activity</th>
<th>CYP</th>
<th>Km1 a</th>
<th>Vmax1 b</th>
<th>Vmax1/Km1 c</th>
<th>Km2 a</th>
<th>Vmax2 b</th>
<th>Vmax2/Km2 c</th>
<th>ΣVmax/Km c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-M1</td>
<td>2D15</td>
<td>5.5</td>
<td>1.0</td>
<td>182</td>
<td>66</td>
<td>2.1</td>
<td>32</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>2B11</td>
<td>173</td>
<td>0.3</td>
<td>1.7</td>
<td>40</td>
<td>0.12</td>
<td>22</td>
<td>62</td>
</tr>
<tr>
<td>(-)-M1</td>
<td>2D15</td>
<td>3.0</td>
<td>0.12</td>
<td>40</td>
<td>59</td>
<td>1.3</td>
<td>22</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>2B11</td>
<td>445</td>
<td>0.18</td>
<td>0.4</td>
<td>26</td>
<td>0.2</td>
<td>28</td>
<td>51.5</td>
</tr>
<tr>
<td>(+)-M2</td>
<td>2B11</td>
<td>10.4</td>
<td>0.5</td>
<td>48</td>
<td>430</td>
<td>1.5</td>
<td>3.5</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>2D15</td>
<td>474</td>
<td>0.6</td>
<td>1.3</td>
<td>30</td>
<td>0.4</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2C21</td>
<td>30</td>
<td>0.4</td>
<td>13</td>
<td>8.5</td>
<td>1.1</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>2C41</td>
<td>8.5</td>
<td>1.1</td>
<td>130</td>
<td>23</td>
<td>1.5</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>3A12</td>
<td>23</td>
<td>1.5</td>
<td>65</td>
<td>28</td>
<td>0.2</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>(-)-M2</td>
<td>2B11</td>
<td>7.2</td>
<td>0.2</td>
<td>28</td>
<td>765</td>
<td>1.9</td>
<td>2.5</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td>2D15</td>
<td>351</td>
<td>0.6</td>
<td>1.7</td>
<td>48</td>
<td>0.3</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>2C21</td>
<td>68.5</td>
<td>0.3</td>
<td>4.4</td>
<td>61</td>
<td>0.8</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2C41</td>
<td>61</td>
<td>0.8</td>
<td>13</td>
<td>55</td>
<td>0.4</td>
<td>7.3</td>
<td>7.3</td>
</tr>
</tbody>
</table>

* aµM, b pmol/min/pmol CYP, c µL/min/nmol CYP
Figure 2.

A. Bar graph showing M1 formation rate in dog, human, and cat. The y-axis represents nmol/min/mg protein, and the x-axis represents M1 formation rate.

B. Bar graph showing M2 formation rate in dog, human, and cat. The y-axis represents nmol/min/mg protein, and the x-axis represents M2 formation rate.

C. Bar graph showing the M1/M2 formation ratio in dog, human, and cat. The y-axis represents Ratio, and the x-axis represents M1/M2 formation ratio.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

A. M1 formation rate (pmol/min/pmol CYP2D15) vs. Concentration (μM)

B. M1 formation rate (pmol/min/pmol CYP2D15) vs. V/S

C. M2 formation rate (pmol/min/pmol CYP2B11) vs. Concentration (μM)

D. M2 formation rate (pmol/min/pmol CYP2B11) vs. V/S

Legend:
- (+)-tramadol
- (-)-tramadol
Figure 7.
Figure 10.

A. Bar chart showing the M1 formation rate (ratio to control activity) for (+)-tramadol and (-)-tramadol under different conditions:
- Control (corn oil)
- Rifampin
- β-Naphthoflavone
- Control (saline)
- Phenobarbital
- Clofibrate acid

B. Bar chart showing the M2 formation rate (ratio to control activity) for (+)-tramadol and (-)-tramadol under the same conditions as in A.